On Genetic Advantages, Doping, and Sports

Malcolm Gladwell, in my opinion, has published the best piece he’s written this year in “Man and Superman.” The central question he posits: do genetic advantages make sports (in particular, cycling) unfair compared to those who choose to dope? Paraphrased: what qualifies as a sporting chance in athletic competitions? He goes through a brief comparison of elite athletes in skiing, long-distance running, but his primary focus is on cycling.

When Hamilton joined Armstrong on the U.S. Postal Service racing team, he was forced to relearn the sport, to leave behind, as he puts it, the romantic world “where I used to climb on my bike and simply hope I had a good day.” The makeover began with his weight. When Michele Ferrari, the key Postal Service adviser, first saw Hamilton, he told him he was too fat, and in cycling terms he was. Riding a bicycle quickly is a function of the power you apply to the pedals divided by the weight you are carrying, and it’s easier to reduce the weight than to increase the power. Hamilton says he would come home from a workout, after burning thousands of calories, drink a large bottle of seltzer water, take two or three sleeping pills—and hope to sleep through dinner and, ideally, breakfast the following morning. At dinner with friends, Hamilton would take a large bite, fake a sneeze, spit the food into a napkin, and then run off to the bathroom to dispose of it. He knew that he was getting into shape, he says, when his skin got thin and papery, when it hurt to sit down on a wooden chair because his buttocks had disappeared, and when his jersey sleeve was so loose around his biceps that it flapped in the wind. At the most basic level, cycling was about physical transformation: it was about taking the body that nature had given you and forcibly changing it.

“Lance and Ferrari showed me there were more variables than I’d ever imagined, and they all mattered: wattages, cadence, intervals, zones, joules, lactic acid, and, of course, hematocrit,” Hamilton writes. “Each ride was a math problem: a precisely mapped set of numbers for us to hit. . . . It’s one thing to go ride for six hours. It’s another to ride for six hours following a program of wattages and cadences, especially when those wattages and cadences are set to push you to the ragged edge of your abilities.”

Hematocrit, the last of those variables, was the number they cared about most. It refers to the percentage of the body’s blood that is made up of oxygen-carrying red blood cells. The higher the hematocrit, the more endurance you have. (Mäntyranta had a very high hematocrit.) The paradox of endurance sports is that an athlete can never work as hard as he wants, because if he pushes himself too far his hematocrit will fall. Hamilton had a natural hematocrit of forty-two per cent—which is on the low end of normal. By the third week of the Tour de France, he would be at thirty-six per cent, which meant a six-per-cent decrease in his power—in the force he could apply to his pedals. In a sport where power differentials of a tenth of a per cent can be decisive, this “qualifies as a deal breaker.”

A must-read if you’re at all interested in sports, genetics, and the doping as cheating debate.

This sentence in the concluding paragraph is telling:

It is a vision of sports in which the object of competition is to use science, intelligence, and sheer will to conquer natural difference. 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s